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Nucleation rates and induction times during colloidal crystallization:
Links between models and experiments
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A kinetic model for the evolution of the cluster size distribution during crystal nucleation and growth is
presented. The model allows one to establish precise links between model parameters and experimental mea-
sures of nucleation kinetics. This approach demonstrates the significance of several processes not accounted for
in classical nucleation theories. Chief among these is that the driving force for crystal nucleation decreases
rapidly due to a reduction of the background monomer concentration as crystallization progresses, resulting in
a reduction of nucleation rates. This, coupled with the disparities in the definitions of measured and predicted
quantities, leads to significant discrepancies between predictions of extant models and experimental estimates
of nucleation rates. Accounting for these effects, calculations of the kinetic model are shown to be in good
agreement with experimental estimates of nucleation rates, crystal growth velocities, and induction times
during the crystallization of hard sphere colloidal suspensions.
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I. INTRODUCTION

The kinetics of crystallization of colloidal suspensions h
seen extensive study due to the ability of these system
mimic molecular crystallization and due to applications
volving highly ordered arrays of colloidal particles@1–3#.
Since the pioneering work of Becker and Doring@4#, models
based on classical nucleation theory have been employe
analyze nucleation kinetic data@5,6#. Despite being the stan
dard, however, comparisons of experimental estimates
nucleation rates and predictions of classical models are p
often showing discrepancies of tens of orders of magnit
@5,6#. Experimental investigation of nucleation kinetics
molecular systems is difficult because of the small time a
length scales associated with nucleation phenomena in t
systems and can be a cause for these discrepancies@5,7#.
Colloidal suspensions render these time and length sc
amenable to experimental measurement. Even in these
tems, however, independent estimates of nucleation rates
tained using different experimental techniques but un
identical crystallization conditions show severe discrepan
not only for complex systems such as proteins@8#, but also
for well characterized hard sphere colloidal suspensi
@9,10#.

One reason for these discrepancies lies in the inade
cies in the nucleation rate models employed. Due to the
cus of classical models on the energetics of cluster for
tion, a detailed description of what is inherently
nonequilibrium, kinetic process is compromised. Further,
certainties exist in our knowledge of the solid fluid surfa
tension—often used as an adjustable parameter—to w
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predictions of classical nucleation theory are extremely s
sitive @5,6,9–12#. As crystallization progresses, the bac
ground concentration drops significantly reducing the driv
force for subsequent crystallization@8,13,14#, whereas extant
theories assume the supersaturation to remain constant
more complex systems such as proteins, discrepancies
from uncertainties in the knowledge of the pair interactio
as well, and these details have not been incorporated
descriptions of nucleation kinetics@15–22#.

A second reason for the discrepancies between model
dictions and experimental results lies in the disparities
tween the quantities measured experimentally and the q
tities predicted by models. Nucleation rates are determi
from light scattering experiments@13,14# where the scattered
intensity detected involves the cumulative effect of the d
tribution of cluster sizes, whereas models predict the nu
ation rate of clusters of the critical size~defined below!. Es-
timates of nucleation rates are often obtained by measu
induction times during crystallization@13,14,23–26#, usually
defined as the time after supersaturating a suspension
detectable crystals to first appear. Links between induc
times and nucleation rates are only empirical@8,23,25,27#,
making comparisons of model predictions and measura
quantities questionable. Currently, no models exist for p
dicting induction times.

Due to these limitations, definitive interpretations of t
data obtained from experiments on the kinetics of crys
nucleation are difficult. As a consequence, a fundame
understanding of the governing principles of the crystalliz
tion process is still lacking. To facilitate such an understa
ing, we present in this paper a model of colloidal crysta
zation kinetics that predicts precisely the quantities measu
in nucleation kinetics experiments.

We consider light scattering experiments on supersa
rated hard sphere colloidal suspensions. There are two
vantages of starting with this system. First, there is a gro

ail
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ing database with which to compare our predictio
@9,12–14,28–38#. Second, the pair potentials governing t
particle interactions are well understood: Two hard sph
particles experience no direct interactions in suspension
cept for an infinite repulsion at contact. The resulting ph
behavior is simple: only solid-fluid phase transitions occ
governed by a single parameter, the particle volume fract
f @39,40#. The freezing boundary occurs atfs50.495. Asf
increases abovefs , an increasing fraction of the suspensi
is eventually crystallized, the fraction reaching 100% at
melting boundary,fm50.55. Whenf.fm , 100% crystal-
lization is achieved with the crystalline phase at a pack
fraction f equal to the initial particle volume fraction in th
fluid phase. Crystallization can be suppressed under te
trial conditions by rapid increases off abovefs , resulting
in a hard sphere glass atf;0.58@41#. In microgravity, crys-
tals eventually emerge from glassy suspensions@36#.

Light scattering experiments detect the number and
size of the scattering units in a crystallizing sample. The
fore, prediction of quantities derived from these measu
ments demands knowledge of the evolution of the distri
tion of cluster sizes as crystallization progresses. Previou
cluster size distributions have been predicted using class
nucleation theory, but the assumptions employed make
predictions approximate@5,42–46#. For example, Wu@42#
assumes that a steady state distribution of small cluste
instantaneously achieved, whereas Schneidman and W
berg @43# assume that small clusters exist in an equilibriu
distribution dictated by the energetics of cluster formatio
Shi and Seinfeld@44# rigorously calculate the evolution o
the distribution of clusters of all sizes, but assume that
background monomer concentration remains fixed as cry
lization progresses.

Here, we develop a population balance model to desc
the evolution of the cluster size distribution in crystallizin
systems. In this model, clusters form and grow as a resu
a competition between two processes: the aggregation
single particles onto and the dissociation of single partic
from cluster surfaces. Particles aggregate onto cluster
faces by gradient diffusion, driven by the differences b
tween their concentrations in the bulk suspension and n
cluster surfaces. Particles on cluster surfaces reside in po
tial energy wells because of their bonds with neighbor
particles. These surface particles dissociate back into
bulk suspension by diffusing out of their respective poten
wells via thermal motion. In a previous study@10#, we have
developed descriptions of these processes for hard sp
systems and calculated steady state nucleation rates and
tal growth velocities. Here, we employ these descriptions
build a population balance model that allows the determi
tion of the evolution of the cluster size distribution. Intere
ingly, we find that as crystallization progresses the ba
ground monomer volume fraction rapidly decreases from
initial value, lowering the driving force for crystallizatio
significantly. This important effect is ignored in classical a
proaches. Linking the quantities measured in scattering
periments to the cluster size distribution, we are able to p
dict the measured nucleation rates, crystal growth velocit
and, in particular, induction times. The predictions are
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very good agreement with reported quantities. The mo
thus provides significant insights into the underlying mec
nisms governing crystal nucleation and also a more rigor
route for interpreting data obtained from nucleation kinet
experiments.

The paper is organized as follows. In Sec. II, we descr
the quantities measured in scattering experiments in term
the cluster size distribution in a crystallizing sample. In S
III, we develop the population balance model that predi
the time evolution of this cluster size distribution. In Sec. I
we present model predictions of cluster size distributions
experimental quantities including nucleation rates, crys
growth velocities, and induction times, and compare th
with experiments. In Sec. V we draw conclusions.

II. QUANTITIES ESTIMATED FROM LIGHT
SCATTERING EXPERIMENTS

We consider a colloidal suspension containing spher
particles of radiia, occupying a volume fractionf0 . If f0
.fs , the particles will aggregate to form growing cluste
With time, a distribution of cluster sizes,n(m,t), defined as
the number of clusters in the sample containingm monomers
at a timet after the onset of crystallization, emerges and
volume fraction of single particles, or monomers, decreas
In typical light scattering experiments@13,14#, the intensity
of light scattered by such a suspension is detected around
first Bragg peak. As crystals nucleate, the Bragg peak gr
and narrows. The area under the Bragg peak contains in
mation about the fraction of the suspension that is crys
line, while the width of the peak contains information of th
average crystal size. This information is analyzed to obt
induction times, crystal growth velocities, and nucleati
rates@13,14,36#. Below, we use Bragg scattering theory
relate measured quantities to the cluster size distribut
n(m,t).

Using Laue’s approximation@47#, the linewidth of the
scattering from a cubic crystalline cluster consisting ofm
particles can be shown to equal 1/(2a)m1/3 and is inversely
proportional to the linear dimension of the cubic cryst
Here, 2a is the lattice spacing assumed to equal a part
diameter. In the presence of more than one cluster, the l
width gives an average cluster size. Assuming the cluster
be optically independent so that the total intensity scatte
is the sum of the intensities scattered by the individual cl
ters @47#, the average crystal size follows as:

L~ t !
2a 5

(
m5m*

`

m4/3f ~m,t !

(
m5m*

`

m f~m,t !

, ~1!

where the smallest sized cluster that can produce a detec
Bragg scattering intensity is set tom* , the critical cluster
size defined below, andf (m,t)5n(m,t)/N is the normalized
cluster size distribution, withN being the total number o
monomers in the suspension at timet50 marking the onset
of crystallization.
2-2
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NUCLEATION RATES AND INDUCTION TIMES DURING . . . PHYSICAL REVIEW E66, 051602 ~2002!
The fraction of the suspension crystallized,X(t), is de-
fined as the ratio of the volume occupied by the crystals
the total volume of the suspension. Assuming that anm par-
ticle cluster occupies a spherical volume of radiusRm
'a(m/fcryst)

1/3, it follows that

X~ t !5f0 (
m5m*

`
m f~m,t !

fcryst„f~ t !…
, ~2!

where fcryst is the packing fraction of monomers inside
cluster, assumed here to be independent ofm but dependent
on the instantaneous monomer volume fraction,f(t). It can
be shown thatX(t) determined experimentally agrees wi
Eq. ~2! to within a constant multiplicative factor.

Finally, the number density of~average-sized! crystals
Nc(t) is calculated as the ratioX(t)/L3(t) and can be written
as

Nc~ t !5
f0

~2a!3fcryst„f~ t !…

@(m5m*
` m f~m,t !#4

@(m5m*
` m4/3f ~m,t !#3 , ~3!

giving the experimental nucleation rate

J~ t !5
dNc~ t !

dt
. ~4!

Classical theories predict the steady state nucleation
as the steady rate of increase of clusters bigger than the
cal size @5#. Thus, Jclassical is proportional to
d@(m5m*

` f (m,t)#/dt. Clearly, this is not the same as the ra
J(t) determined experimentally, the latter representing a s
stantially different average over the cluster size distributi
Similarly, the crystal growth velocities,dRm /dt, predicted
by models are not the same as the velocities,dL(t)/dt, de-
termined experimentally. It is not surprising, therefore, th
extant models are poor predictors of measured quantities
extract meaningful information from these experiments,
require a model that predicts the evolution of the cluster s
distribution, f (m,t), the background monomer volume fra
tion, f(t), and the crystal packing fraction,fcryst. We de-
velop such a model in the following section.

III. POPULATION BALANCE MODEL

We consider again a colloidal suspension containingN
spherical particles of radiia, occupying a volume fraction
f0.fs . In this suspension, individual clusters form a
grow as a result of the competition between two proces
the aggregation of monomers onto and the dissociation
monomers from cluster surfaces. The rates of these
cesses, denotedb and a, respectively, depend onm and f.
On average, a cluster grows ifb.a and shrinks ifb,a. At
any f, the sizem* 5m* (f) at which a5b is called the
critical cluster size. Here,f(t)5npn(1,t) andnp54pa3/3.

WhenN is large, population balance determines the e
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lution of the cluster size distribution of the normalized num
ber densities,f (m,t)5n(m,t)/N, as

d f~m,t !

dt
5 f ~m11,t !a~m11,f!1 f ~m21,t !b~m21,f!

2 f ~m,t !@a~m,f!1b~m,f!#, m.1,

d f~1,t !

dt
52 f ~2,t !a~2,f!22 f ~1,t !b~1,f!

1 (
m52

`

@ f ~m11,t !a~m11,f!2 f ~m,t !b~m,f!#.

~5!

Solving these equations with the initial condition
f (1,0)51 andf(0)5f0 , yields the evolution of the cluste
size distribution as crystallization progresses. This requ
knowledge off(t) and the average dissociation and agg
gation rates,a(m,f) andb(m,f).

For hard sphere suspensions the aggregation and diss
tion rates have been determined previously@10,48# as fol-
lows. To determine dissociation rates, particles on a clu
surface are assumed to reside in potential energy wells
cause of their bonds with their nearest neighbors@10,49#.
Although two hard sphere particles experience no inter
tions in dilute suspensions except for an infinite repulsion
contact, in dense suspensions, the prominent peak in the
distribution function,g(r ), at contact indicates the tendenc
of two nearby hard sphere particles to come close to e
other rather than stay separated@50#. This tendency is treated
as an effective attraction between the particles that lead
bond formation. The strength of these bonds is estima
using the potential of mean force@10,50#. The number of
these bonds,Cs , depends on the cluster radius,R, as
Cs(R)5Cf1(Cs`2Cf)„I 2exp$z(Rmin2R)/2a%…, and deter-
mines the depth of the potential well in which the surfa
particles reside. Here,Cf is the number of nearest neighbo
of a particle in the fluid, which, following previous est
mates, is set at 9 over the volume fraction range of inte
@10#. Cs`511 is the number of nearest neighbors of a p
ticle on the surface of an infinitely large cluster, and its va
is determined from conditions enforcing thermodynam
consistency@10#. Rmin5a(2/0.74)1/3 is the radius of the
smallest possible cluster, i.e., containing two particles. T
form for Cs(R) chosen here is an empirical interpolatio
where the parameterz controls the rate of increase ofCs
from Cf to Cs` as R increases@10#. This parameter can, in
principle, be determined independently. In addition, it is
lated to the curvature dependence of the solid-fluid surf
tension as discussed below.

The motion of the particles in this potential well is d
scribed by the Smoluchowski equation@48#. Solving the
Smoluchowski equation, the average time required for
particles to diffuse out of their potential wells into the bu
suspension is determined. Then, the rate at which parti
dissociate from the cluster surface is
2-3
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a~m,f!5H 6vD0fRR

a3

@12~12a/R!3#

@12a/2R#

@11a/R#2

@~11a/R!321# F ~12fR!3

~12fR/2!G
Cs2Cf

, m.1,

0, m51

~6!
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where the clusters are assumed to be spherical, so thm
5(R/a)3fcryst. The packing fraction of particles on the su
face, fR50.48610.154 exp$j(f20.64)/(f2fs)%, and fs
50.495 is the solubility boundary for hard sphere susp
sions@10#. Again, the form forfR is an empirical interpola-
tion where the parameterj characterizes how the density o
particles in the surface layer changes with the suspen
volume fraction. We relate this parameter to the volume fr
tion dependence of the solid fluid surface tension as
cussed below.D0 is the Stokes-Einstein diffusivity of the
particles, andv50.2 is an approximate hydrodynamic co
rection toD0 on the cluster surface@10#.

As particles associate to form clusters, a small zo
around the clusters becomes depleted of monomers.
generates a gradient in the concentration of monomers f
the bulk suspension to the cluster surfaces. Particles are
sumed to aggregate onto cluster surfaces by diffusing d
this concentration gradient. Knowing the gradient diffusiv
of hard sphere particles, the diffusion equation is solved
give the aggregation rate as@10#

b~m,f!5
3RD0

a3 S 11
a

RD E
fR

f

~12f8!2.55~114f814f82

24f831f84!df8. ~7!

To determinef(t), we assume that all clusters exist
mechanical equilibrium with the background suspens
@10#. For determining nucleation rates and induction tim
we are interested in the evolution of the system over tim
small compared to the times over which crystallizati
reaches completion. At these short times, Harland and
Megen@13# showed that crystals exist in mechanical equil
rium with the background suspension forf0.fm . Here, we
assume the approximation to hold forf0,fm as well. Then,
by equating the pressures in the solid and fluid phases u
the known equations of state for the two phases@51,52#,
fcryst can be related tof as follows@10#:

fcryst5
0.738

11
2.17~12f!3

~11f1f22f3!f

. ~8!

From fcryst and f (1,t), the volume occupied by the cluste
is determined. Assuming the total volume of the crystallizi
sample to be fixed, this gives the volume available for
monomers in the background suspension. Then, knowing
volume occupied by the monomers,f(t) can be determined
as
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f0f ~1,t !

12
f0„12 f ~1,t !…

fcryst„f~ t !…

. ~9!

Equation~9! closes the set of coupled differential populatio
balance equations, represented by Eqs.~5!–~8! above, which
can now be solved to obtain the evolution of the cluster s
distribution as crystallization progresses. We present our
culations and comparisons with experiments in the follow
section.

IV. MODEL CALCULATIONS AND COMPARISONS
WITH EXPERIMENTS

A. Evolution of the cluster size distribution

Shown in Fig. 1 is the evolution of the cluster size dist
bution, f (m,t), obtained by integrating the population ba
ance equations, Eqs.~5!–~9!, for a hard sphere suspensio
with f05fm50.55. ~For these calculations, the valuesz
50.9 andj51.0 have been used and will be explained b
low.! Beginning withf (m,0) as ad function atm51, f (m,t)
increases with time form.1 and decreases form51. The
monotonic decrease off (1,t) indicates the conversion o
monomers to larger clusters. Form.1, f (m,t) first in-
creases, reaches a maximum value,f max(m,tmax), at which it
stays for an extended period of time and eventually
creases.tmax increases monotonically withm. We note that
similar trends, where the number densities of clusters of
creasing sizes sequentially reach steady states, have
predicted by Shi and Sienfeld@44#.

The corresponding evolution of the monomer volum
fraction, f(t), is shown in Fig. 2 for several values off0 .
Three distinct regimes characterize the evolution off(t): a
sharp initial decrease, an intermediate plateau, wheref
'fplat(f0), and a late third regime of less rapid decrea
The existence of these regimes leads to the following
scription of the nucleation process.

In a metastable suspension consisting of monomers al
pairs of monomers aggregate to form dimers. Whenm*
@2, dimers have a much greater tendency to shrink tha
grow. As a result, a pseudo-steady-state distribution
quickly established between monomers and dimers. Acco
ingly, f decreases fromf0 to fplat. Slowly, however, trim-
ers form, and the distribution shifts to a steady state betw
monomers, dimers, and trimers. As the number density
trimers is small@ f (3,t)/ f (2,t)!1#, f remains nearly con-
stant atfplat. This process continues, with bigger cluste
forming at increasingly slower rates, until clusters of t
critical size are formed. These clusters have a greater
dency to grow than to shrink. As they grow, monomers
2-4
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NUCLEATION RATES AND INDUCTION TIMES DURING . . . PHYSICAL REVIEW E66, 051602 ~2002!
rapidly consumed from the background suspension drivinf
below fplat.

Based on this description, a good estimate offplat can be
obtained from a steady state distribution of monomers
dimers alone. This yields

fplat5
f0

11
2b~1,fplat!

a~2,fplat!
F12

f0

fcryst~fplat!
G . ~10!

As shown in Fig. 3, estimates offplat obtained thus are in
excellent agreement with the values obtained from solv
the population balance equations. The slightly but system
cally higher values offplat obtained from Eq.~10! suggest
the presence of small numbers of larger clusters as expe
The rapid reduction of the background monomer volu
fraction during crystallization significantly reduces the dr
ing force for nucleation. Nucleation occurs at a rate de
mined by f;fplat and not f0 as assumed in classica
models.

FIG. 1. Time evolution of the cluster size distribution, obtain
by solving Eqs.~5!–~9!, in a suspension with an initial monome
volume fraction,f050.55.
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B. Nucleation rates, growth rates, and induction times

Measurements of nucleation rates during the crystalli
tion of hard sphere suspensions have been reported by
eral groups@12–14,30#. Simulation studies have also bee
performed @9#, and classical@13,14,28,35,49# and kinetic
@10# models have been applied to interpret the experime
and simulations. While significant quantitative discrepanc
exist, the following qualitative trends have been observed
small supersaturations, asf increases abovefs , the thermo-
dynamic driving force for crystallization increases, resulti
in an increase in nucleation rates. At very high volume fra
tions, however, the concentration gradient between the
face of a crystal nucleus and the bulk suspension diminis
Aggregation of particles onto the crystal surface, be
driven by gradient diffusion, also diminishes, reducing t
nucleation rate. As a result of these competing influence
maximum in the nucleation rate occurs at an intermed
volume fraction of about 0.56.

FIG. 2. Time evolution of the background monomer volum
fraction,f, for different values off0 .

FIG. 3. Intermediate plateau volume fractions~see text!, fplat ,
for different values off0 . The solid line represents calculations v
Eq. ~10! and the symbols are obtained by solving Eqs.~5!–~9!.
2-5
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Steady state nucleation rates predicted by the class
approach capture the experimental data well, albeit using
solid fluid surface tension~or another quantity such as th
particle diffusivity! as an adjustable paramet
@9,10,13,14,49#. In the classical approach,f is assumed to
remain constant atf0 during crystallization. From the popu
lation balance model above, however, we note thatf quickly
decreases tofplat. At the same time, the analyses of th
experimental estimates in Sec. II show that the experim
tally determinedJ(t) measures a different quantity from th
predicted by classical models. Employing classical mod
for analyzing data from scattering experiments is theref
questionable. Here, we employ the population balance m
to calculate experimental quantities as described in Sec.

We begin in Fig. 4 with calculations of the number
crystals,Nc(t), using Eq.~3!, for several values off0 . The
parameter valuesz50.9 andj51.0 are used~see below!.
At small timesNc(t) increases rapidly, followed by a regim
of much slower increase. The two regimes are underst
by comparing Nc(t) to the quantity Nc(m* ,t)
5(1/8a3)@f0 /fcryst(t)# f (m* ,t), which is the contribution
of the number of critical clusters toNc(t), as shown in Fig.
5 for f050.53. We note that up to the crossover from t
first to the second regime, which occurs at a time we den
tcross(f0), Nc(t)'Nc(m* ,t). Beyondtcross, Nc(t) continues
to increase, whereasNc(m* ,t) stays constant for a substa
tial period of time and then decreases. Thus,tcrosscharacter-
izes the time for the cluster size distribution up to the criti
size to reach steady state and is closely related to the lag
predicted by classical models@5,42–46#. In the inset of Fig.
5, we showtcrossas a function off0 .

In Fig. 6, we present calculations of time depend
nucleation rates,J(t), using Eq.~4!, for different values of
f0 . Since changes inNc(t) are over several orders of mag
nitude, we simplify Eq.~4! using dNc(t)/dt;Nc(t)/t. For
all values off0 , we find thatJ(t) first rises sharply untilt
;tcross(f0). Beyond tcross, J(t) rises more slowly and
reaches a plateau valueJplat(f0) before decreasing eventu
ally. Thus, as predicted by classical models and as obse

FIG. 4. Time evolution of the number of crystals for differe
values off0 , calculated using Eq.~3!.
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in experiments,J(t) appears to attain a pseudo-steady-st
value after a transient period.

In Fig. 7, we compare our calculations ofJplat(f0) with
the experimental estimates of Palberg@14#, Schatzel and
Ackerson @29#, and Harland and van Megen@13#, and the
simulation data of Auer and Frenkel@9#. We find good agree-
ment between our predictions and the experimental e
mates. Our predictions capture the qualitative trends of
experiments accurately. Quantitative discrepancies of sev
orders of magnitude exist between independent experime
estimates, and between experiments and simulations.
origins of these discrepancies remain poorly understood.
reason for the discrepancies might be that the simulation
Auer and Frenkel@9# employ approximate descriptions of th
hydrodynamic interactions of the colloidal particles in su
pension. Our predictions agree with the experimental e
mates to within the uncertainties in the experiments.

FIG. 5. Time evolution of the total number of crystals~solid
line! compared with that of the number of crystals of the critic
size~dashed line! for f050.53. The inset shows the crossover tim
~see text!, tcross, as a function off0 .

FIG. 6. Time dependent nucleation rates calculated via Eq.~4!
for several values off0 .
2-6
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The parametersz and j are associated with the volum
fraction at the cluster liquid interface and the cluster s
dependence of the number of nearest neighbors. These
rameters can be linked to the curvature and the volume f
tion dependence, respectively, of the solid fluid surface t
sion,g, as follows@10#:

g~R,f!a2

kT
5

fRR

4pa

„12~12a/R!3
…

~12a/2R!
@Ccrystln g~2a,fcryst!

2Cs ln g~2a,fR!#, ~11!

where Ccryst512, fR50.48610.154 exp$j(f20.64)/(f
2fs)%, and fs50.495, Cs5Cf1(Cs`2Cf)exp@z(Rmin
2R)/2a#, and g(2a,f)5(12f/2)/(12f)3. Thus, know-
ing the curvature and volume fraction dependence ofg, the
parametersz and j can be determined independently. Su
information for hard sphere crystals is not available. As
result, we treat the parameters as adjustable and choos
valuesz50.9 andj51.0, to yield the best agreement b
tween predictions ofJplat(f0) and experimental nucleatio
rates.

Because nucleation rates attain pseudo-steady-state
ues, classical treatments, assumingf to be constant, can b
applied to predict the experimental nucleation rates.
shown previously, such approaches lead to a different se
values forz andj @10#. Differences in the parameter value
correspond to differences ing. In particular, forR@a and
f'0.55, ga2/kT50.23 whenz50.9 andj51.0, whereas
ga2/kT50.20 as determined previously@10#. This suggests
that fits to experimental estimates of nucleation rates ass
ing f remains constant atf0 result in smaller values ofg
than their true values. This is in agreement with the conc

FIG. 7. Pseudo-steady nucleation rates~the plateau values in
Fig. 6! as a function off0 ~filled circles! compared to the experi
mental estimates from Palberg@14# ~open squares!, Schatzel and
Ackerson@29# ~circles!, maximum~checkered squares! and average
~dotted squares! nucleation rates from Harland and van Megen@13#,
and from the simulations of Auer and Frenkel@9# of monodisperse
~1! and polydisperse~3! hard sphere suspensions.
05160
e
pa-
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-

a
the
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s
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sion of Auer and Frenkel@9#, who find that the values ofg
obtained from such fits (ga2/kT'0.12) are lower than those
obtained from fits to their simulation data (ga2/kT'0.18).
Note that classical nucleation theory predicts nucleation ra
to be proportional to exp(Ag3), whereA is a constant at a
given supersaturation so that the rates are exceptionally
sitive to changes ing. Interestingly, however, we find tha
predictions of steady state nucleation rates using the clas
approach@10# ~not shown! with the parameter valuesz
50.9 andj51.0 but usingfplat instead off0 compare quite
well with the experiments.

To compare crystal growth rate data with model pred
tions, we present in Fig. 8 calculations ofL(t) using Eq.~1!
for several values off0 . Again, two distinct regimes char
acterize the evolution ofL(t), separated bytcross(f0). L(t)
is nearly independent oft for t,tcross, and begins to rise for
t.tcrosswith a power law dependence ont. The behavior for
t,tcross is consistent with the fact that in this regime th
number of clusters of the critical size increases trem
dously, whereas the number of bigger clusters remains
most constant. Therefore,L(t,tcross);@m* „fplat(f0)…#1/3,
and is almost constant. Fort.tcross, we find that L(t)
;t1/2, for all f0 . Both these dependences have been
served in experiments and have been predicted by the re
analysis of Chenget al. @36#. In Fig. 9, we compare experi
mental growth rate data with the predictions of Eq.~1!. The
comparisons are quite satisfactory indicating that the po
lation balance model captures much of the behavior obse
experimentally during the nucleation and growth of ha
sphere crystals.@We note that the model for crystal growth i
Ref. @10# using f(t)5f0 predicts thet1/2 dependence for
long times but fails to predict thet0 dependence for smal
times. This is due to its inability to predict the growth o
subcritical clusters. As a result, experimental values oL
(.R* ) andt were employed as inputs for calculating grow
rates, resulting in the apparent better agreement betw
model predictions and experiments.#

Finally, we present comparisons of measured and ca

FIG. 8. Time evolution of the average crystal size calcula
using Eq.~1! for several values off0 showing thet0 dependence a
short times and thet1/2 dependence at long times.
2-7
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lated induction times during hard sphere crystallization.
emphasize that due to the inability of previous attempts
predict the evolution of cluster size distributions and the fa
ure to link measured and predicted quantities, no mod
currently exist to predict induction times. The present co
parison is only possible because the model is develope
predict the evolution of cluster size distributions,f (m,t),
and thus provides a rigorous test of model predictions.

The time evolution of the fraction of the sample cryst
lized, X(t), calculated using Eq.~2!, is presented in Fig. 10
for several values off0 . X(t) counts clusters bigger than th
critical cluster size,m* , and is small during the rapid forma
tion of smaller clusters in the initial stage of nucleation.
the number of clusters bigger thanm* increases,X(t) in-
creases and yields an induction time determined as show

FIG. 9. Time evolution of the average crystal sizes calcula
using Eq.~1! for f050.535~solid line!, compared with the experi
mental estimates of Palberg@14# obtained via small angle light sca
tering ~triangles! and Bragg scattering~squares! also for f0

50.535.

FIG. 10. Time evolution of the fraction of the suspension cr
tallized calculated using Eq.~2! for several values off0 . The pro-
cedure for calculatingt ind is demonstrated forf050.54.
05160
e
o
-
ls
-
to

In

Fig. 11, we present calculations of the induction times a
compare them with the experimental estimates of Harla
and van Megen@13# and Palberg@14#, both obtained from
Bragg scattering experiments. We note that a qualitative
crepancy exists in thef0 dependence of the induction time
t ind , reported in the two experimental data sets. Asf0 is
increased up to 0.55,t ind decreases and the two data se
agree to within an order of magnitude. Beyondf050.55,
however,t ind increases in the estimates of Harland and v
Megen, whereas it continues to decrease monotonically
cording to Palberg. The origins of this discrepancy rem
poorly understood. Our model agrees qualitatively with t
estimates of Harland and van Megen, predicting a minim
in t ind at f0;0.55. Quantitatively as well, our model cap
tures the data of Harland and van Megen to within an or
of magnitude.

The ability of our model to predict induction times is
significant advantage over classical models. Direct meas
ments of nucleation rates are difficult and more reproduc
induction time measurements are often used to estim
nucleation rates. More recent applications involving prot
crystallization preclude nucleation rate measurements f
scattering experiments, as the particle sizes are significa
smaller than the wavelength of light. Here, small angle lig
scattering experiments allow induction time measureme
but their interpretation is confounded by the lack of mod
@24,25#. The present model thus provides a route to extr
valuable information from such experiments.

V. CONCLUSIONS

The population balance model presented here predicts
time evolution of the cluster size distribution during crysta
lization and allows us to predict quantities that are measu
experimentally to probe the kinetics of colloidal crystalliz
tion. In particular, comparisons have been made betw
predicted and measured nucleation rates, crystal growth

d

-

FIG. 11. Induction times calculated using Eq.~2! ~circles! ~see
text! and compared with the experimental estimates of Harland
van Megen @13# ~checkered squares! and Palberg@14# ~open
squares!.
2-8
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locities, and induction times, the measurements made
light scattering experiments on the crystallization of ha
sphere suspensions. Model calculations suggest that pr
tions of these quantities are affected significantly by the
crease in the background monomer volume fraction as c
tallization progresses. Classical approaches assume
background monomer volume fraction to remain fixed, a
therefore, overestimate the driving force for crystallizatio
At the same time, discrepancies exist in the definitions of
quantities predicted by classical models and the quant
measured experimentally. Consequently, fits using the cla
cal approaches to experimental estimates of nucleation
growth rates result in erroneous values of the adjustable
rameters like the solid-fluid surface tension. The kine
model presented here predicts the evolution of the clu
size distribution during crystallization, and accounts exp
ls

F.
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,

. A

e

tt

d

r,

05160
ia

ic-
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s-
the
d
.
e
s
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itly for these effects. In addition, a significant advantage o
classical models is the ability of the population balan
model to predict induction times. Measurements of induct
times are much simpler than nucleation rates, but interpre
the resulting data has been confounded by the lack of m
els. Predictions of induction times using the kinetic mod
compare well with experiments.
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